
AI-Edge 5 Report

Overview

This report describes my submission to SIGNATE 5th AI Edge contest.
Overall, the task in this contest is object tracking, with at least one of the object
tracking operations must be performed with RISC-V core. Object tracking can
be simplified into object detection and bounding box tracking tasks. Therefore,
object tracking can be performed using object detector model and tracking
algorithm.

The overview of this submission is shown in the figure below. This submission
chooses yolov4-tiny implementation from AlexeyAB darknet with SORT
tracking algorithm. After training with yolov4-tiny using AI Edge 5 dataset,
The model was further processed based on the steps from Yolov4 Vitis AI
Tutorial. With keras-YOLOv3-model-set, yolov4-tiny configuration and
weights are converted to Keras .h5 and from .h5 to TensorFlow .pb. The .pb
model was processed further to .xmodel with Vitis AI workflow. DPU-PYNQ
is used to control yolov4-tiny .xmodel in Xilinx Ultra96v2 board. After the
inference, the yolov4-tiny bounding boxes were tracked using SORT algorithm.

Figure 1: Implementation Overview

SORT consists of two main algorithms: the Kalman filter and Hungarian algo-
rithm. In this submission, SIGNATE RISC-V was chosen as a soft RISC-V
core to perform the computation for Hungarian algorithm. SIGNATE RISC-V
is based on VexRiscv RV32IM. This core was used with RISC-V assembly to
perform computation. To communicate between the SIGNATE RISC-V core
with Python programming language, the RISC-V core was controlled using
PYNQ.
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https://signate.jp/competitions/537
https://github.com/AlexeyAB/darknet
https://github.com/abewley/sort
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/master/Design_Tutorials/07-yolov4-tutorial
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/master/Design_Tutorials/07-yolov4-tutorial
https://github.com/david8862/keras-YOLOv3-model-set
https://github.com/Xilinx/DPU-PYNQ
https://drive.google.com/drive/folders/10-Iuoyv82enzYSUc1rQC-JeBsagdHbnd
https://github.com/SpinalHDL/VexRiscv
https://github.com/Xilinx/PYNQ


Darknet setting

There is a new feature in yolov4-tiny: a route and split operation which splits
feature map channels into two groups and selects only one of these groups
to process further. The operation is visualized in the figure below. However,
Vitis AI 1.4 does not support this split operation. Therefore, I replaced these
operations with a standard route without a split operation.

Figure 2: Left: route and split operation. Right: route operation without split

The training dataset was split into training and validation datasets with the
radio of 80:20.

The original yolov4-tiny anchor boxes are replaced with anchor boxes optimized
for AI Edge 5 dataset. This anchor box optimization was done via the following
command:

./darknet detector calc_anchors aiedge5.data -num_of_clusters 6 -width 512 -height 512

The original anchor boxes are [10,14], [23,27], [37,58], [81,82],
[135,169], [344,319]. Each one of [] indicates the anchor box’s width
and height. The optimized ones are [5,14], [9,30], [27,29], [16,64],
[49,68], [100,117]. This may indicates that the smaller anchor boxes are
more suitable for AI Edge 5 dataset.

RISC-V and Hungarian Algorithm

I selected the Hungarian algorithm to perform with the RISC-V RV32IM core
because it can be converted into all integer operations easier than others. I
used Hungarian C code based on Hungarian-Algorithm-in-C-Language
as the template code for this algorithm. To convert Hungarian algorithm to
integer, the input cost matrix (IOU) should be converted into integers first.
Since this C Hungarian algorithm was created to optimize in the minimum
direction, I have to change the optimization direction to maximum (the higher
IOU, the better). Given the IOU cost in range of [0, 1], I used this equation
costnew = round((1 − cost) × 1000) to convert from the floating-point to integer
and inverse the optimization direction.
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https://github.com/mohammadusman/Hungarian-Algorithm-in-C-Language


The RISC-V RV32IM core that I used was provided by SIGNATE with minor
modifications. I have only increased both DMEM (data memory) and IMEM (in-
struction memory) memory range to 256KB to earn more space for assembly
codes and data. Based on this RISC-V core, I modified this Hungarian C code
instead of receiving the inputs from stdin to receive the inputs from DMEM rather.
The outputs of Hungarian code were also modified from produce outputs to
stdout to produce the outputs to DMEM memory instead.

RISC-V core can be controlled using PYNQ. However, there are several limitations
for PYNQ, and DPU-PYNQ. Both can not be used in the same Python program;
therefore, I need to separate the code into stage1.py and stage2.py. A bug
forced me to reboot the board after I run stage1.py. Otherwise, I may get the
Segmentation fault error when I run stage2.py.

stage1.py is a script for yolov4-tiny DPU inference, non-max suppression,
and others. All resultant bounding boxes from stage1.py are saved to
detection_list.npy. stage2.py is a script that loads detection_list.npy,
processes with SORT algorithm, and generates the submission.json, which
can be submitted to SIGNATE to score.

Another issue is FPGA environment is different from the personal computer
environment. After increasing the memory address of the FPGA, the valid FPGA
memory address is only within [A0000000, A007FFFF ] as shown in the figure
below. To allocate the 32-bit into the stack, the compiler may use addi sp, sp,
-4. However, assuming that sp starts with all zeros, then the sp will become
FFFFFFFC, which exceeds the valid FPGA memory range. To overcome this
problem, I found the solution to initialize the stack pointer first with lui (load
upper immediate) sp, sp, A0030.

Figure 3: Address editor

Since the IMEM address starts with A0000000 instead of 00000000, the compiler
requires to acknowledge the IMEM address range. Otherwise, it may generate the
wrong address for the jump or branch operations. This can be adjusted during
the linking process. The .ld file as shown below can be used to indicate the
address range in this case.
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MEMORY
{

IMEM (rxw): ORIGIN = 0xA0000000, LENGTH = 0x40000
}

Results

The stage1.py consumes (measure with time python3 stage1.py):

real 26m17.523s
user 30m14.733s
sys 0m42.996s

The stage2.py consumes (measure with time python3 stage2.py):

real 4m20.862s
user 3m33.671s
sys 0m19.770s

In terms of tracking performance, I scored 0.2579209 on the SIGNATE leader-
board, as shown in the figure below. I observed no difference after using with
RISC-V Hungarian algorithm.

Figure 4: SIGNATE leaderboard score

Using real time, both stage1.py and stage2.py consume 31 minutes with 38
seconds, or 1898 seconds. Or around 5.85 frames per second or 25.65 seconds
per test video. Note that if the reboot time after I run stage1.py is counted,
the time usage will be longer.

Unknowingly, this RISC-V assembly code can operate only with the 2x2 cost
matrix in Ultra96v2. C code works fine on the personal computer settings.
Therefore, I was forced to use the RISC-V core to perform the Hungarian
algorithm only when the input cost matrix is 2x2. These 2x2 cost matrices are
produced from yolov4-tiny total 123 frames out of 11,100 total frames. Out of
these 123 frames, I used the ARM processor to perform the Hungarian algorithm
instead.
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