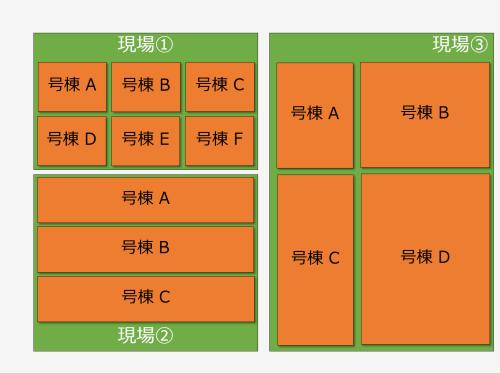
2nd Place Solution

飯田産業 土地の販売価格の推定

2019.10.11

三舩 哲史

コンペ概要


- ✓ 解法の概要
- ✓ 特徴量
- ✓ モデル作成
- ✓ その他

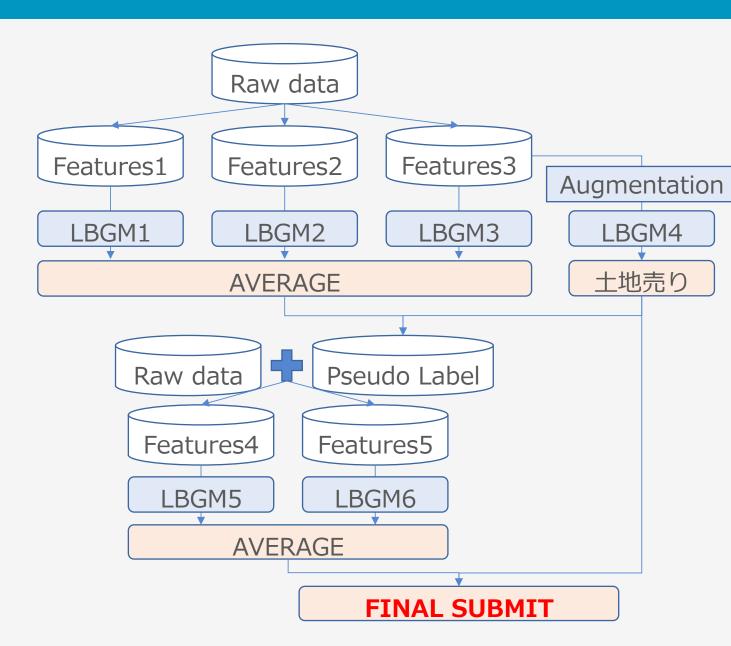
コンペ概要

- ✓ 解法の概要
- ✓ 特徴量
- ✓ モデル作成
- ✓ その他

コンペの概要とデータ

- ✓ 土地 (+建物) の販売価格を予測
- ✓ 学習用データ
 - 現場:2780件
 - 号棟:6461件(土地売り:360件)
- ✓ 評価用データ
 - 現場:1855件
 - 号棟:4273件(土地売り:216件)

評価指標


- ✓ MAPE (平均絶対誤差率)
- ✓ 目的変数が小さいほど誤差に厳しくなる

プラン	建物面積	契約金額	予測値	誤差
土地売り	0	10,000,000	11,000,000	10 %
3LDK	150 m ²	20,000,000	21,000,000	5 %

コンペ概要

- ✓ 解法の概要
- ✓ 特徴量
- ✓ モデル作成
- ✓ その他

解法の概要

- ✓ 特徴量セットを複数作成
- **✓** モデルはLightGBMのみ
- ✓ 土地売りデータのみ別モデル で予測値を置換
- ✓ Pseudo Labelを用いて、評価用データも学習時に使用

コンペ概要

- ✓ 解法の概要
- ✓ 特徴量
- ✓ モデル作成
- ✓ その他

特徴量 (前処理)

- ✓ 誤入力や表記ぶれを直す
 - ・ 埼玉県埼玉県さいたま市 → 埼玉県さいたま市
 - ひばりが丘、ひばりヶ丘 → ひばりヶ丘に統一
- ✓ 特徴量の分割

プラン		階数	部屋数	納戸
土地売り	-	0	0	0
2F/3LDK		2	3	0

特徴量(ドメイン)

✓ 南側に道が接しているか

- ✓駅からの距離
 - 徒歩は80m/分、車は400m/分
 - 車で10分 → 徒歩で50分に変換して合わせる
- ✓ 路線価の欠損値をLightGBMで予測
 - 路線価が0の現場が存在(倍率方式の地域?)

特徴量(一般的な手法)

- ✓ Aggregation (カテゴリで集約)
 - Ratio:土地面積100,平均值50 → Ratio = 100/50
 - Diff: 土地面積100, 平均值50 → Diff = 100 50
- ✓ 数値列の四則演算
 - 基準価格 路線価, 土地面積 + 建物面積…

コンペ概要

- ✓ 解法の概要
- ✓ 特徴量
- ✓ モデル作成
- ✓ その他

モデル作成

- ✓ LightGBMのみ使用
 - CatBoostを試すもスコアがいまいち
 - NNも試せるようになりたい…
- ✓ パラメータ調整
 - 手動チューニング

モデル作成 (学習)

- ✓ Group 5-Fold CV
 - 現場でGroup化
 - TrainとValidに同じ現場が存在しないように
- ✓ 目的変数を[0,1]で正規化し、Xentropyを使用
- ✓ 特徴量の評価
 - CVの平均値とfeature_importance眺めてました
 - 最終的にはfeature_importanceの上位N個を使用

コンペ概要

- ✓ 解法の概要
- ✓ 特徴量
- ✓ モデル作成
- ✓ その他

Pseudo Labeling

- ✓ データ量が少なかったため使用
- ✓ 全評価用データを学習用データに追加
- ✓ Pseudo Labelで学習した結果を再度Labelとして使用
- ✓ Pseudo Labelなし → 最終順位6位相当
 - ✓ スコア 8.39625 → 8.22340

Data Augmentation

✓ 少数だが、誤差が大きい土地売りへの対策

• 土地売りの物件の面積と価格をN倍して水増し

• 建物の価格を1㎡:80000円とみなす

建物面積	契約金額		建物面積	契約金額	
200	40,000,000	-	0	24,000,000	-16,000,000
100	16,000,000		0	8,000,000	-8,000,000

Ensemble

- ✓特徴量セットをいくつか作成
- ✓各モデルはそれぞれSeedAverage(x5)
 - ✓ LightGBM (gbdt, Xentropy)
 - ✓ LightGBM (gbdt, RMSE)
 - ✓ LightGBM (dart, RMSE)

うまくいかなかったこと

- ✓ 住居表示に対応する緯度・経度を用いてkNN
- ✓ catboost
- ✓ 都市でGroupFold
- ✓ PCA等での次元削減
- ✓ 現場単位の合計価格を予測
- ✓ その他いっぱい

終わってから思いついたこと

- ✓ 評価指標に対して予測値を最適化できていない
 - MAPEでは得られた予測値より小さくした方が良い
 - 予測値 x 0.99 すると手元のCVでスコア 0.08 向上

予測値	真の値	誤差	V 0 00	予測値	真の値	誤差
10,000,000	11,000,000	9.09	X 0.99	9,900,000	11,000,000	10.0
10,000,000	9,000,000	11.11		9,900,000	9,000,000	10.0

MAPE: 10.1

MAPE: 10.0

まとめ

【特徴量作成の流れ】

- ① データクレンジング
- ② ドメインベース
- ③ 一般的な手法

【特に効いた取り組み】

- ① 路線価の予測
- ②部分的なデータの水増し
- **3 Pseudo Labeling**

ありがとうございました